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.u.anct-The froc, undamped vibration of an isotropic circular cylindrical shell is analysed with
hiper order displacement model, Biving rise to a morc realistic: parabolic variation of transverse
shur strains. The method accounts for in-planc inertia, rotary inertia, and shear deformation
effects on the dynamic response of cylindrical shells. The frequencies obtained from the prescnt
analysis, shear dc(ormation theory, and Flu. theory arc compared with the exact elasticity
results. It is found that the frequencies prcdic:tcd by the present analysis arc closer to exact values
than those predicted by the shear deformation theory, especially for cases with shorter
wavelengths.

NOTATION
a, n, L radius, thickness and length of shell

x, 9, Z, I axial, circumferential, radial and time coordinates
II, v, W axial, circumferential and radial displacements

IIot Vo axial and circumferential displacements at middle surface of shell
".' v. rotations in x and 9 planes
m, n axial and circumferential mode numbcn

E, G, p., P YOUDI'S modulus, shear modulus, Poisson's ratio and mass density of the material
qlW' q" applied foJ'tCS in Z direction on outer and inner surfaces of the shell

(.' (" (, normal strains
Y... Y". Y.. Ibcar strains

(/.. (/" (/. normal stresses
t ... t". t.. shear stresses

N.. N" N... H.. membrane foJ'tCS per unit length of shell
M.. Mit M". M.. bending and twisting moments per unit length of shell

Q., Q, transverse shear forces per unit length of shell

I -II 1.+ P A. _ nnta
111=-2- 112=-2- L

Eh)
D=--7'

12(1 _ p 2)

I. INTRODUCTION

The theory of shells is one of the most important applied branches of the theory of
elasticity. Thin shell-type constructions are finding applications in the most diverse
branches of technology. Apart from linearity between stress and strain, and deformations
being considered small, classical thin shell theories are based on Kirchhoff-Love hypoth­
esis; the implication is that thickness shear deformations are negligible.

The reliable prediction of the small deflection response characteristics of moderately
thick shells require the use of shear deformation theories. A number of research workers
[1-5] have studied the effects of shear deformation in the theory of vibration of
homolCDCOUS isotropic cylindrical sheDs. Their calculated reaults, as well as those of
olbers, are sUlllJlWizcd in the monograph of leilia [6]. TbeIe studies confirmed that the
effects of shear deformation can become quite sipificant for smal1 radius-to-thickness or
length-to-thickness ratios, as well as for shorter wavelengths of loaF!' sheDs.

Althoush the above mentioned shear deformation theories yield acceptable solutions,
they do not accurately predict response characteristics of the shell in cues such as: when
accurate higher order frequencies are required; when accurate prediction of stress
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singularities is required; and when thermal gradient through the thickness of the shell
becomes noticeable. Such problems can be addressed only when the three-dimensional
elasticity methods are employed. But an exact three-dimensional analysis with general edge
conditions is impractical. Hence it is necessary to formulate some approximate analysis
which is sufficiently accurate and is practical.

Usually, in two-dimensional plate and shell theories, displacement components have
been considered as power series expressions in normal coordinate (z). Various such
formulations can be found in [7-10]. It may be said here that depending on the number
of terms retained, in the power series expressions for displacement components, the
number of unknown displacement parameters to be determined varies; and hence the
accuracy and complexity of the problem also varies. Further discussions on the applica­
bility and accuracy of such formulations, in the analysis of plates, can be found in [II].

In this paper an attempt is made to propose a two-dimensional theory for the analysis
of isotropic homogeneous shells by adapting the displacement fields suggested by Kovarik
[12] for orthotropic sandwich"lype shells. Thus, the proposed method considers a total of
five-unknowns, which are the mid-surface displacement quantities, and still maintains the
higher order (cubic) polynomial form for in-plane displacement expressions. At the same
time, a more realistic parabolic variation for transverse shear strains, with zero values at
the extreme fibers, is achieved. Also, unlike some of the shear deformation theories. for
example as in the case of [5, 8], the present analysis does not involve the determination
of any unknown shear coefficients.

The primary intended application for the present higher order theory is in the field of
laminated composite shells. However, the purpose of this paper is to evaluate the proposed
method by comparing the results obtained from it, as well as from shear deformation
theory [5], with the exact three-dimensional elasticity results for isotropic cylindrical shells
[15]. The generalization of the present analysis to orthotropic homogeneous and laminated
composite shells will be dealt with in a future publication.

The present analysis is based on the assumptions such as, small deflections, linear
elasticity and isotropicity. Also, the logarithmic terms appearing in some of the force­
displacement relations and strain energy expression are expanded in powers of h/a. Terms
of order h3/a 3 only are retained, neglecting higher order terms. This limits the application
of the present theory for shells with higher h/a values, as is the case with most of the shell
theories.

2. DERIVATION OF GOVERNING EQUATIONS OF MOTION

The components of displacements are assumed as follows (refer to the list of
nomenclature):

v= (a +z)(vo+~VI __Z we)
a a +z .

w=w

(I)

where ~ = z[l - (4z 2/3h 2)] and the comma indicates differentiation with respect to the
letter(s) followed by it. The selection of the second term in u and vdisplacement expressions
results in the parabolic variation of transverse shear strains as is evident from the eqns
(3) below. The assumption of constant value for radial displacement (w), across the
thickness of shell, facilitates to have zero transverse shear strains at the extreme fibers of
the shell and also limits the complexity of the problem to a reasonable degree. Any
additional terms in w expression would violate this situation. Thus, to have higher order
expression for w we have to add appropriate terms to u and v expressions, to maintain
zero values for transverse shear strains at the extreme fibers, which further complicates the
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problem. The strain-displacement relations of the three-dimensional elasticity [13] are:

I
£, = --(v, + w)a +z .

(2)
I I t'

Y..o= v +--uo Y:o=--wo+ V.--- Y.u = w... + u,:.
•< a+z' . a+z' ~ a+z

Substitution of eqns (I) into eqns (2) leads to the following strain-displacement relations

I ~ z W
£, = -VO,9 +-VI' - W fIB +--a a' a(a + z)· a + z

(
a +z)( 4z

2
)Yze= -a- I- hf VI

( a + z) (0 + z) (I) (') Z(2a + z)Y..o= -- vO,;r+~ -- VI,;r+ -- Uo,+ -- "1,9-- -- W,;rB'a a a+z' a+z a a+z

Assuming Uz = 0, the stress-strain relations can be written as

(3)

We have the following definitions for stress resultants

In addition to the above we define the following

fM2 (a +z)
(M~, M,) = (u", u,)e -- dz

-A(2 a

fA(2 {a +z)N,= u -- dz.
-A(2 a

Also,

(5)

(6)
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The expressions for stress resultants are given in Appendix 1. Thus, strain energy of the
shell under consideration is given as

The work done by the applied surface tractions, considering applied loads in z-direction
only, may be written as

w =~ Ie f. 2(q:o + qz;)wa dx dO.

The kinetic energy of the shell is given as

- 1 rff 2 2 2 (a + z) dx (JK - 2J9 x = p(u" + v" + W,,) -a- a dz d.

Thus, the total potential energy of the shell is written as

n =K+ w- U.

(8)

(9)

(10)

Using Hamilton's principle [14] the following equations of equilibrium can be obtained

L I1 L12 L13 L t4 LIS Uo 0
Lu ~3 L24 ~s UI 0

L33 L)4 L3S Vo = 0 (11 )
Sym. L.. L45 VI 0

Lss w a2(q:o + qz;}

Finally, the boundary conditions along the edge of shell require that, six linearly
independent combinations of the following twelve boundary variables must be specified.

The elements of Lij matrix in eqns (11) are listed below.
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4
Ln ="5 DP20,x6

204
l.:24 = 31SDp2aO,..e

[
2) 1 2) IJ 2Lss =B +D 0 ( ,-"xxx + 2( ),xx66 +.:..r.. ),/1H6 +~ ,(J6 +"2 - hpo ()tI/

000

h3p 2+12[0 (),.ull +( )tB6I1]'
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In deriving the equilibrium eqns (11) and stress resultants (eqns 5 and 6) logarithmic
tenns are expanded in powers of h/o and tenns of order h3/0 3 only are retained. It may
be observed that FIiigge's equations of motion can be obtained from eqns (11) by deleting
rows and columns (2nd and 4th) corresponding to "I and VI displacements from Lij matrix
and corresponding rows on right hand side load vector.

3. RESULTS AND DISCUSSIONS

Free vibration of simply supported shell with no axial constraint is analysed using
equations of motion (11). The solution of these equations is assumed in the following
modal fonn,

(12)

where,

tJ)1(X, 8) = Cos (nmx/L) Cosn8

tJ)2(X, 8) =Sin (nmx/L) Sin n8

.3(X, 8) = Sin (mu /L) Cos n8.



628 A. BHIMARADDI

Substituting eqns (12) in eqns (II), in the absence of applied forces, the problem reduces
to finding the eignevalues and eignvectors of the following equation

(13)

where X, Yare 5 x 5 matrices and p T = (AI' A2, A). A., A~). The following shell geometric
and matcrial paramcters are taken for comparing of results with exact elasticity analysis
[15J.

A. =0.5n, n, 2n, 4n; Jl =0.3

h/a =0.06,0.1,0.12,0.18

n = I, 2, 3,4.

The results are presented in the tabular form along with the other theories. The values
of the shear correction factors, used in calculating the numerical results for the shear
deformation theory, have been taken as n 2/12. It may be said here that, for each
combination of m and n values, Fliigge theory yields 3-frequencies whereas the present
analysis and the shear deformation theory yield 5-frequencies. The two extra frequencies
correspond to thickness shear modes.

It was observed, for various parameters considered, that the frequency values, except
those corresponding to flexural mode of vibration, were in good agreement with elasticity
results. Hence the lowest natural frequencies are only considered for comparing the results
obtained from various theories. These values are tabulated in Tables I and 2 for different
parameters considered.

From these tables one may observe that Fliigge theory over-estimates the frequencies
for all parameters considered. The error in frequency values obtained from Fliigge theory

Table l. Comparison of lowest natural frequency parameters (D/Do)

h/a-0.06 hia-a.l0

I.- 0-1 0-2 0-3 0-4 n-l n-2 0-3 n-4

E 0.018S3 0.01089 0.00826 0.01010 0.03100 0.01907 0.01814 0.0261S

P 0.018S3 0.01090 0.00828 0.01011 0.03101 0.01911 0.01819 0.02618

0.5" s 0.018S3 0.01090 0.00828 0.01011 0.03101 0.01910 0.01819 0.02617

F 0.018S3 0.01090 0.00831 0.01019 0.03101 0.01913 0.01838 0.02679

E 0.02781 0.02213 0.01816 0.0174S 0.04784 0.03927 0.03643 0.04046

P 0.02781 0.02214 0.01818 0.01748 0.0478S 0.03978 0.03651 0.04051

" S 0.02781 0.02214 0.01818 0.01748 0.04785 0.03977 0.03650 0.04049

F 0.02782 0.02215 0.01823 0.01761 0.04791 0.03994 0.03697 0.04161

E 0.03691 0.03611 0.03565 0.03631 0.07618 0.07684 0.07935 0.08475

p 0.03692 0.03612 0.03566 0.03632 0.07615 0.07682 0.07931 0.08467

2" S 0.03692 0.03612 0.03566 0.03630 0.07612 0.07677 0.07924 0.08457

F 0.03717 0.03644 0.03610 0.03695 0.07842 0.07954 0.08287 0.08950

E 0.08639 0.08748 0.08933 0.09199 0.20529 0.20802 0.21261 0.21906

P 0.08639 0.08728 0.08911 0.09175 0.20478 0.20678 0.21132 0.21771

4" s 0.08611 0.08718 0.08902 0.09165 0.20360 0.20628 0.21077 0.21710

F 0.09161 0.09290 0.09510 0.09824 0.23623 0.23995 0.24620 0.25502

E- Elasticity [15), P- Present, S- Shear Defor=atlon [5]. F- Flugge [161



Free vibration analysis of circular cylindrical shells 629

Table 2. Comparison of lowest natural frequency parameters (DIDo)

h/a-0.12 h/a-0.16

A n-l n-2 n-3 n-4 n-1 n-2 n-3 n-4

E 0.03730 0.02359 0.02462 0.03686 0.05652 0.03929 0.04996 0.07821

P 0.03730 0.02365 0.02470 0.03687 0.05653 0.03944 0.05009 0.07833

0.5" S 0.03730 0.02365 0.02469 0.03684 0.05653 0.03944 0.05002 0.07797

F 0.03731 0.02371 0.02512 0.03813 0.05656 0.03985 0.05219 0.08387

E 0.05853 0.04978 0.04789 0.05545 0.09402 0.08545 0.09093 0.11205

p 0.05856 0.04986 0.04799 0.05550 0.09409 0.08562 0.09109 0.11202

" s 0.05856 0.04985 0.04796 0.04796 0.09407 0.08555 0.09091 0.11170

F 0.05872 0.05024 0.04899 0.05775 0.09509 0.08782 0.09616 0.12215

E 0.10057 0.10234 0.10688 0.11528 0.18894 0.19467 0.20616 0.22450
p 0.10047 0.10224 0.10674 0.11508 0.18832 0.19403 0.20544 0.22361

2" S 0.10040 0.10214 0.10661 0.11488 0.18800 0.19358 0.20478 0.22269

F 0.10517 0.10781 0.11387 0.12454 0.20923 0.21805 0.23486 0.26094

E 0.27491 0.27849 0.28447 0.29287 0.50338 0.50937 0.51934 0.53325

P 0.27286 0.27641 0.28233 0.29064 0.49818 0.50418 0.51416 0.52808

4" S 0.27197 0.27547 0.28131 0.28951 0.49479 0.50058 0.51021 0.52366

F 0.32960 0.33479 0.34349 0.35571 0.67100 0.68056 0.69634 0.71803

E- Elasticity [15}. p- Present. S- Shear Deformation IS}. F- Flugge 116}

increases for increased values of l, n, and h/a. For example, the error is about +16% for
l =4n, n =4, h/a =0.1 and +35% for l =4n, n =4, h/a =0.18.

The present analysis and the shear deformation theory over-estimate the frequencies
for lower values of l( <n), and under-estimate the same for higher values of l(>n). For
lower values of l(<n), the maximum error in the present analysis and in shear
deformation theory is about +0.4%. For higher values of l(>1t), the maximum error in
the present analysis is about - 1%, and in the shear deformation theory it is about - 1.8%;
for l = 4n, n = 4, h/a =0.18.

It may be observed that the frequency values predicted by Fliigge theory are bound from
above. Whereas, better approximations such as, the shear deformation theory and the
present analysis, bound eigenvalues from above for longer axial wavelengths (l < n), and
from below for shorter axial wavelengths (l > 1t). Also, it may be seen that the bound
becomes closer, in almost all cases, as eigenvalues converge towards the exact solution, as
is evident in the case of present analysis.

4. CONCLUSIONS

A higher order theory for undamped dynamic response of an isotropic circular
cylindrical shell is developed. The method accounts for in-plane inertia, rotary inertia and
shear deformation effects. The proposed method assumes parabolic variation, across the
thickness of shell, for transverse shear strains. From numerical results presented, for
various shell geometric parameters, it may be concluded that the frequencies predicted by
the present analysis are closer to the exact values, than those predicted by the shear
deformation theory; especially for the cases with shorter wavelengths.
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